A point of interest is a specific physical location which someone may find interesting. Restaurants, retail stores, and grocery stores are all examples of points of interest. Since the phrase is a mouthful, 'points of interest' is often abbreviated as ‘POI’. Many companies that sell POI databases or POI data API’s name their products ‘Places Data APIs’.
Retailers and retail analytics firms use POI databases to get lists of where stores are located. Along with store location info, they use metadata about a POI such as the category (NAICS code) to power site-selection and trade area analysis.
AdTech companies create geofences around points of interest to create location-based audiences. They also join the GPS data with POI geofences for advertising measurement (online-to-offline attribution).
POI data is also used in the real estate, consulting, and financial services industries.
POI Factory is one source of free POI data, but coverage and data freshness are lacking. POIplaza is another source of free POI data but it suffers from similar problems.
In partnership with ESRI, SafeGraph has free points of interest data available on the ArcGIS Marketplace. However, this data isn’t exportable and is meant only for visualizing POI data on a map for ArcGIS Online users.
For bulk access to POI data, there are several paid enterprise offerings (each with pro's and con's) covered below.
The Google Places API generally has the best accuracy and one of the most comprehensive datasets of POI in the market. It is high quality and they have a fantastic team that keeps the data up-to-date.
However, one of the biggest disadvantages with Google Places API is the licensing terms. It’s extremely hard to legally use their data unless you are just displaying it directly to users on a Google Map. For example, Apple or Uber find it tough to license Google data in a way that works well for them.
The other worry with Google Places is that they might change their (already restrictive) terms or increase their already expensive pricing. Google did that in 2018 and it hurt various geospatial and mapping companies.
The Google Places API is one of the best-known Places APIs but enterprises often choose alternatives such as Foursquare Places, Factual Places, Facebook Places, and SafeGraph Places due to factors such as price, licensing terms, and data availability.
At SafeGraph, we’ve seen companies switch from Google Places to SafeGraph Places due to SafeGraph’s broad and permissive licensing terms. Short of directly re-selling our data, almost anything goes since SafeGraph is just a data company. We encourage companies to use our data to create derivative products and applications. Our Places data is also much cheaper for enterprises looking to buy data in bulk.
Lastly, SafeGraph Places has attributes that the Google Places API does not offer. For example, when it comes to building footprint data (geofences) for a POI, Google has that data internally but it isn’t offered via API. Thus, many companies choose to augment their Google Places data with SafeGraph Geometry data or to use SafeGraph Places exclusively.
Factual Places is another well-known Places API provider. They have global data on places, supporting 130 million POI in 52 countries. They also have many granular POI category specific attributes. For example, for restaurant POI, they have data on whether the restaurant accepts reservations, is cash only, is kid friendly, or has a kid's menu.
For several reasons, businesses choose Google Places, Facebook Places, Foursquare Places, and SafeGraph Places as alternatives to Factual Places.
Businesses chose Foursquare Places vs. Factual Places because Foursquare has POI in every single country on earth while Factual only has data on 52 countries. Due to the user-generated nature of Foursquare data, Foursquare places coverage is also higher and more accurate for POI that people tend to check into often, like restaurants and bars. But for this same reason, at less checked-into POI, like a doctor's office or grocery store, Foursquare data can be lacking compared to Factual’s data.
Businesses also often chose as an alternative to Factual Places due to SafeGraph’s broad licensing rights, price, and high accuracy coverage
Unique to SafeGraph, almost every POI has data on the exact building footprint (polygon) for a place. Factual (and all other popular POI alternatives) offer only a location’s centroid.
For geofencing applications, where knowing the precise location of a place is crucial (such as for turning GPS data into store visit intelligence), SafeGraph polygons make SafeGraph superior to other Places data vendors.
Evaluating a POI database can be a tough task, so SafeGraph put together a POI data evaluation guide and a data evaluation checklist. Some critical questions to ask when evaluating a places database:
The physical world is in constant flux. Maintaining accurate data on places is an immensely difficult engineering problem. At SafeGraph, even with a top machine learning and data science team, we still find bugs and inaccuracies in our own data all the time (and we'll openly publish known discrepancies each release for transparency).
You can read more about the complexities of physical data in our blog post, Forget ML: 4 Weird Edge Cases Which Confuse Even Humans When It Comes To Places Data.
POIs are classified by NAICS codes. NAICS stands for the North American Industry Classification System. Some example NAICS categories for POI include “Restaurants & Other Eating Places” and “Grocery Stores.” Some examples of NAICS POI sub-categories are “Limited-Service Restaurants” and “Convenience Stores.” You can view SafeGraph’s full list of POI categories to understand our POI data coverage by different NAICS code.
Classifying a POI to its correct NAICS code is an incredibly challenging problem that we’ve worked heavily on at SafeGraph. We tackled this problem by using natural language processing and human feedback to analyze the content on a POI’s website and use that to map the POI to its most probable category.
The biggest problem with POI data is that physical places info is fragmented around the web. Company store locators, governments, commercial real estate companies, and user-review sites all have some POI data but with varying attributes, freshness, and accuracy.
The tricky part is combining all the data into a unified schema and also verifying the accuracy of the different underlying datasets. You can read more about how SafeGraph creates its POI data.